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High-fidelity simulation of boundary layer flow
over waves

By J. Wu† AND H. Hwang

We extend the high-fidelity, two-phase, fully coupled simulations of wind-wave interac-
tion fromWu et al. (2022), with a focus on the dynamics of the wave-modulated boundary
layer. In addition to the previous pressure-gradient-based forcing, we implement a new
forcing method inspired by the near-wall-patch configuration to impose a constant mean
momentum flux through the upper simulation boundary. We analyze various statistics,
including triple decomposition, vertical profiles of turbulent and wave-induced stresses,
horizontal wavenumber spectra across different cross sections, and mean velocity profiles
alongside the corresponding roughness parameter. The sensitivity of these statistics to
forcing methods is reported. Finally, we discuss the implication of the roughness length
parameter and potential applications of our high-fidelity simulations for improving wind-
wave models.

1. Introduction

Surface waves are ubiquitous over the ocean. They respond to wind forcing and obtain
most of their energy from wind. At the same time, they perturb the atmospheric boundary
layer and modulate the momentum transfer across the air-water interface. Such two-way
coupling is a distinct feature of wind over the ocean (and other open bodies of water) as
opposed to solid boundaries.
There are important applications for modeling the interaction between waves and the

boundary layer on top of them. The air-sea momentum flux from this process is an
essential boundary condition needed for weather and climate models. The development
of offshore wind farms in recent years has also spurred renewed interests in wind-wave
coupling, as the wave-modulated boundary layer may have implications for wind turbines
that reside at a height comparable to wavelengths of long ocean waves.
Numerical simulations for these applications require modeling approaches of differ-

ent complexities considering different scales and computational costs. In the context of
weather and climate models, Reynolds-averaged Navier-Stokes (RANS) type equations
are solved, and the grid is very coarse [O(1-100 km)], which means only averaged effects
of waves are modeled, although some regional models have been tested for resolving long
waves (Zhu et al. 2023). In the context of wind farms and other smaller-scale simulations,
large-eddy simulations (LESs) are often employed that can resolve long waves or capture
the phase-dependent effects of them (Deskos et al. 2021; Aiyer et al. 2024; Ayala et al.
2024).
Despite their importance, models of wind waves (in the form of wave-averaged param-

eterizations or subgrid wall models) are limited by a lack of physical understanding of
turbulence over moving wavy boundaries, even after continuous theoretical, numerical
and observational research over the past few decades. State-of-the-art coupled models
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still parameterize air-sea fluxes using low-order models that consider no or minimal ef-
fects of waves (Edson et al. 2013). Effects of shorter waves that are not resolved still need
to be modeled, which is a non-negligible source of uncertainty in wall-modeled LESs of
wind over waves (Husain et al. 2019). Incorporating the additional variability due to
wave conditions can potentially increase the predictive skills of such models, especially
in high-resolution settings and out-of-equilibrium conditions such as storms.
The motivation of our work is to perform high-fidelity direct numerical simulations

(DNSs) of wind over waves and to use the physical insights gained as guidance for de-
veloping simplified models. In Wu et al. (2022) (hereinafter WU22), we conducted fully
coupled wind-wave simulations using a geometric volume-of-fluid solver with adaptive
mesh refinement (AMR) features and studied wave growth rate under various wind con-
ditions. In this report, we extend the analysis to the rich dynamics in the wave-modulated
boundary layer in the form of turbulence statistics.
In addition to analyzing the dynamics of the wave-modulated boundary layer, this

work aspires to work toward uncertainty quantification for DNS data sets. There are a few
sources of uncertainty in the estimate of turbulence statistics from numerical simulation:
turbulence closure models, numerical discretization of the governing equation and finite
sampling (Oliver et al. 2014). Since we are using DNS, which is a high-fidelity simulation,
we assume that the main source of uncertainty is the sampling uncertainty. This is
particularly important in our case since the flow is transient in nature due to the full
coupling between wind and actively growing waves.
The remainder of this report is structured as follows. In Section 2, the formulation

and computational setup are outlined, and an additional forcing scheme for sensitivity
test is introduced. Section 3 briefly describes the momentum equation of boundary layer
over waves with triple decomposition. Section 4 presents the statistics analyzed based on
the DNS data, with a focus on evaluating the sensitivity to forcing schemes and to finite
sampling. Finally, conclusions are drawn in Section 5.

2. Formulation and computational setup

We solve the (variable density) incompressible Navier-Stokes equations,

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · (2µD) + σκδS(x− xF )n, (2.2)

∇ · u = 0, (2.3)

where u, p andD are velocity, pressure and strain rate tensor, respectively. For the surface
tension term, σ, κ, δS , xF , and n are surface tension, curvature, Dirac-delta function,
interfacial location and the normal vector of the interface, respectively. A volume fraction
field F(x, y, z, t) is introduced, and material properties such as density ρ and viscosity µ
are weighted averaged of that of the two phases, in this case water (subscript w) and air
(subscript a):

ρ = Fρw + (1−F)ρa, µ = Fµw + (1−F)µa. (2.4)

We numerically solve for Eqs. (2.1)–(2.4) with an adaptive octree grid, using the Basilisk
numerical solver (Popinet 2009).
To maintain compatibility with the default octree grid, the domain is defined as a cube

with size L0 = 2π. The setup includes four monochromatic waves in the x-direction,



Boundary layer flow over waves 3

Figure 1. (a) Sketch of numerical configuration. (b) Combination of pressure gradient dP/dx
and fringe-layer-only acceleration f . Grey dashed lines mark a few vertical length scales: z = a
shows where the wave crest is; z = λ/2 shows height corresponding to half wavelength; z = Ha/2
shows where the artificial fringe layer in NWP configuration starts.

corresponding to a wavenumber k = 4 and wavelength λ = 2π/4. The averaged water
depth is Hw = 1, resulting in an air side height of Ha = 2π−1. The water depth has been
verified to be deep enough that the results are not sensitive to Hw. Periodic boundary
conditions are applied for the horizontal directions. For the top and bottom boundaries,
we impose ∂u/∂z = ∂v/∂z = 0 and w = 0.

2.1. Original setup

In the original setup of WU22, a constant pressure gradient −(dP/dx) is applied uni-
formly in the air phase to force the boundary layer. The numerical implementation in-
volves adding an acceleration term that is (1 − F(x, y, z, t))dP/dx at every time step.
The dominant stress balance in the horizontal momentum equation leads to

−(dP/dx)Ha = τtot ≡ ρau
2
∗. (2.5)

The total wall stress, τtot, is balanced by vertically integrated pressure gradient and
defines the friction velocity u∗, which is a parameter that we prescribe a-priori. Here,
we refer to the stress at the interface as wall stress, since it bears a resemblance to the
solid boundary stress in wall-bounded turbulence. We keep in mind, however, that it is
a momentum transfer across the two-phase interface. Also note that the stress balance
Eq. (2.5) is only exact in an equilibrium (averaged) sense.

2.2. Near-wall-patch configuration

Inspired by Carney et al. (2020), a near-wall-patch configuration is implemented as an
additional forcing mechanism to investigate the sensitivity of numerical forcing applied,
which should be isolated from the effects of waves on the boundary layer.
The total wall stress is prescribed by selecting the nominal friction velocity u∗, such

that τtot = ρau
2
∗. A constant background pressure gradient, dP/dx, can still be specified

throughout the air height Ha. In cases where the prescribed wall stress and the pressure
gradient dP/dx in Eq. (2.5) are imbalanced, an additional acceleration is applied to a
fringe layer within the region z ∈ [Ha/2, Ha] as

f(z) = 4τturb(Ha − 2z)2(5Ha − 4z)/H4
a , (2.6)
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where τturb = τtot − (dP/dx)Ha is the turbulent momentum flux across the fringe layer
bottom at Ha/2. (We note that the wall normal direction is indicated as z following the
convention used in the atmospheric dynamics community and z = 0 at the air-water
interface.) This formulation guarantees that the partition of dP/dx and f satisfies the
vertically integrated streamwise momentum equation,

−(dP/dx)Ha +

∫ Ha

0

f(z)dz = τtot. (2.7)

The choice of the shape of the auxiliary forcing f(z) is not unique as long as its integrated
value satisfies Eq. (2.7). The expression Eq. (2.6) is the one given in Carney et al. (2020)
and adopted here, which has the property of zero gradient at both Ha/2 and Ha. In
this study, we only consider an extreme case where the pressure gradient dP/dx is zero
and the near-wall layer of z ∈ [0, Ha/2] is forced solely by turbulent momentum flux at
z = Ha/2. This allows us to construct a zero-pressure-gradient boundary layer.

2.3. Numerical considerations, parameters and notations

In WU22, a fully developed boundary layer (precursor) is first computed from rest, while
keeping the waves stationary by setting the water phase velocity at zero. Then, the waves
are released by initializing their orbital velocity. There is an adjustment period upon the
sudden introduction of wave motion, and the duration of this stage is found empirically
(largely by examining the near-wall stress) to last about 4Te, where Te = 2λ/⟨u⟩(z = λ)
is the eddy turnover time of an eddy of the size of wavelength λ and ⟨u⟩(z = λ) is the
mean horizontal velocity. We follow this general guideline in the processing of data for
this report.
The two forcing setups and an illustration of the computational domain are shown in

Figure 1(a). We denote the two forcing setups as “Original” and “NWP-ZPG” (near-
wall-patch-zero-pressure-gradient). For generating the precursor for the NWP-ZPG con-
figuration, given that we already have a fully developed precursor in equilibrium with
the original forcing, we chose to use it as the initial condition for the NWP-ZPG setup
instead of performing a spin-up from rest. Figure 1(b) shows the transitional period after
the forcing is switched from Original to NWP-ZPG. This shortcut reveals an interesting
behavior of the boundary layer mean velocity profile adapting to the change of forcing.
After about 4Ti (Ti defined as the inner layer timescale of 0.1Ha/u∗), the mean profile
stabilizes into a new shape where the log layer seems to have shifted toward a larger
value of z+. While this is an intriguing problem in its own right, it is beyond the scope
of this report to examine the mechanism of the profile shift. In terms of computational
cost, there is no significant difference between the NWP-ZPG and the Original setups
during runtime.
We investigate slow to intermediate wave speed and denote cases of c/u∗ = [2, 4, 8]

with [CU2, CU4, CU8]. The wave age c/u∗ defines the ratio between the phase speed
of waves and characteristic wind speed. We change the gravitational acceleration for
different wave ages while keeping the wavelength constant. Therefore, the wavelength
and wave phase speed are independent for this idealized study (which is not the case
for realistic surface waves). The other nondimensional parameters used are as follows:
the density ratio between air and water ρa/ρw = 1.225 × 10−3; the dynamic viscosity
ratio µa/µw = 1.831× 10−2 × [16, 8, 4] (corresponding to wave ages c/u∗ = [2,4,8]); the
air-side frictional Reynolds number Reτ = ρau∗Ha/µa = 720; the initial wave slope ak
= 0.2; and the Bond number Bo = (ρw −ρa)g/σk

2 = 200. Quantities normalized by wall
units are denoted by a superscription +. Unless otherwise specified, we use the nominal
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Figure 2. Triple decomposition of horizontal and vertical velocity components following
Eq. (3.4). Here, they are plotted for the Original CU4 case, but the qualitative picture is similar
across all cases. Phase averaging is performed with time sampling windows of around 350 tν
(around 6.4 wave periods for CU4).

friction velocity u∗, length scale lν = νa/u∗ and time scale tν = νa/(u∗)
2 as wall units.

The monochromatic wavelength in wall unit is fixed as λ+ = λ/lν = 214, while the wave
period T in wall unit T+ = T/tν ≈ [107, 54, 27] for c/u∗ = [2, 4, 8].

3. Momentum equation for boundary layer over waves

Consider a boundary layer flow in the x direction. The velocity vector u = (u, v, w) can
be decomposed into a Reynolds-averaged mean velocity u = (ū, v̄, w̄) and a turbulent
fluctuation part u′ = (u′, v′, w′). It is common to consider a boundary layer that is
symmetric in the spanwise direction y, homogeneous in the streamwise direction x and
stationary in t. With Reynolds decomposition

u(x, y, z, t) = u(z, t) + u′(x, y, z, t) (3.1)

and the above-mentioned assumptions, the horizontal momentum equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρa

∂p

∂x
+ ν(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) (3.2)

simplifies to

− 1

ρa

∂p

∂x
− ∂u′w′

∂z
− ν

∂2u

∂z2
= 0. (3.3)

The averaged pressure gradient ∂p/∂x typically comes from varying geometry (e.g., of air-
foils) in engineering contexts. For atmospheric boundary layer, it can represent synoptic-
scale pressure patterns. In any case, the pressure gradient acts at a horizontal scale larger
than the boundary layer thickness and has an accelerating/decelerating effect throughout
the total depth of the boundary layer.
For boundary layer flow over waves, the assumption of homogeneity in x no longer



6 Wu & Hwang

holds. The presence of waves induces periodic perturbations that alter the structure of
the turbulent boundary layer. The so-called triple decomposition (Phillips 1966; Hussain
& Reynolds 1970) is introduced

u(x, y, z, t) = ⟨u⟩(z, t) + ũ(x, z, t) + u′(x, y, z, t), (3.4)

which has two parts. The first part is the Reynolds decomposition

u(x, y, z, t) = u(ϕ = x+ c(k)t, z) + u′(x, y, z, t). (3.5)

Here, ·̄ denotes the Reynolds (ensemble) averaging and is only performed in the statis-
tically homogeneous dimensions (in this case along y and along constant phase lines ϕ).
The second part is the wave decomposition

u(ϕ, z) = ⟨u⟩(z) + ũ(ϕ, t) ≡ ⟨u⟩(z) + ũ(ϕ, t). (3.6)

Here, ⟨·⟩ denotes phase averaging, i.e., averaging over wave phase. The bar in ⟨u⟩(z) is
dropped for brevity. By definition, u′ = 0 and ⟨ũ⟩ = 0. Substituting Eq. (3.5) into the
horizontal momentum equation

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

∂u′u′

∂x
+

∂u′w′

∂z
= − 1

ρa

∂p

∂x
+ ν

∂2u

∂z2
, (3.7)

we see that there are additional ∂/∂x terms that cannot be eliminated due to the hor-
izontal inhomogeneity introduced by waves. Furthermore, the pressure term p contains
not only large-scale gradient but also small-scale variation due to wave perturbation.
Triple decomposition [Eq. (3.4)] is required to obtain an equation that does not explic-
itly depend on wave phase, which reads

∂⟨ũw̃⟩
∂z

+
∂⟨u′w′⟩

∂z
= − 1

ρa

∂⟨p⟩
∂x

+ ν
∂2⟨u⟩
∂z2

, (3.8)

and again ⟨u′w′⟩ is shorthand for ⟨u′w′⟩.
To close the system, one can either model the (phase-dependent) turbulent stress u′u′

and u′w′ in the phase-dependent Eq. (3.7) or model the (phase-averaged) wave-induced
stress ⟨ũw̃⟩ and (phase-averaged) turbulent stress ⟨u′w′⟩ in the phase-averaged Eq. (3.8).
The other option is to bypass the Reynolds-averaged equation and perform phase-resolved
LESs or DNSs. In this work, we conduct two-phase DNS, and as part of the analysis we
diagnose the (phase-averaged) wave-induced stress ⟨ũw̃⟩ and turbulent stress ⟨u′w′⟩ from
DNS data. In particular, we compare the stress profile in the Original and NWP setups.

4. Results

4.1. Triple decomposition and stress profiles

Figure 2 shows the triple-decomposed velocity field following Eq. (3.4). The wave-coherent
signals ũ and w̃ are mainly seen in a layer close to the interface and are smaller in
magnitude compared to turbulent fluctuation u′ and w′. The wave-coherent ũ shows
acceleration and deceleration over the windward and leeward parts, respectively; the
wave-coherent w̃ shows alternating upward and downward motions.
In Figure 3, we plot the vertical profiles of phase-averaged, wave-induced stress −⟨ũw̃⟩

and turbulent stress −⟨u′w′⟩. Figure 3(a) shows the profiles for the full extent of air-
phase height Ha. We emphasize that the wave-induced stress only affects a thin layer
near the interface, which is a small fraction of Ha. In the rest of the domain, turbulent
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Figure 3. (a) Vertical profiles of stress over the full extent of Ha, for the Original configuration.
(b,c) Vertical profiles of stress zoomed into the near-wave region for the CU4 and CU8 cases.
Vertical black line indicates where the wave crest is. The stresses are normalized by the nominal
wall stress τtot = u2

∗. The vertical coordinate is normalized by wavelength λ. (d-f) The same as
(a-c) but for the NWP-ZPG configuration.

stress ⟨u′w′⟩ dominates the momentum transport. Each thin green line shows spatially
averaged u′v′ in one time snapshot, while the thick green line shows additionally time-
averaged ⟨u′w′⟩. From this we can see that the statistics of u′w′ need long sampling
time to converge (and they are not fully converged yet in this plot). The wave-coherent
signals, by contrast, are largely unaffected by the finite sampling and are confirmed to
be statistically converged. Even though not fully converged, the profiles of ⟨u′w′⟩ in the
Original setup [Figure 3(a)] agree with that of a pressure-driven boundary layer with
a flat solid bottom (dashed black line), which decreases linearly with height. For the
NWP-ZPG setup [Figure 3(d)], there is a more prominent constant flux layer near the
interface that agrees with that of a ZPG boundary layer. Further away from the wall,
the turbulent stress deviates from the expected profile of NWP-ZPG (dashed black line).
This is likely due to the fact that we transitioned from the original setup precursor to
the NWP-ZPG precursor, but the integration time was not long enough for the stress to
fully adjust. AMR could also potentially affect the resolved stress profiles, and further
examination needs to be done.
Fortunately, the presence of such imbalance in the outer region does not seem to affect

the near-wall region, as shown in Figure 3(b), which is a zoomed-in view of the stress
profiles. For both CU4 and CU8, the change of total stress in [0, 0.5λ] is small and can
be approximated as a constant even for the Original pressure-driven case. The profiles of
⟨ũw̃⟩ in Original and NWP-ZPG are nearly identical. This indicates that the near-wave
dynamics are unaffected by the large-scale forcing scheme.
By comparing the two cases with different wave ages, CU4 and CU8, we can see the

effect of wave condition on wave-induced stress ⟨ũw̃⟩. The vertical extent of the nonzero
region is similar, but the shape is different. In agreement with physical intuition, the
length of the wave-affected layer scales with wavelength but only weakly depends on
wave age. A more complete parameter space needs to be explored before drawing definite
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Figure 4. (a-c) Instantaneous vertical velocity w at three different heights z/λ = 0.1, 0.5, 1
(z+ = 21, 107, 214). Wavenumbers are normalized by the imposed surface wave k0 = 2π/λ. (d-f)
Horizontal wavenumber spectrum for CU4 in the Original setup at three different heights. (g-i)
The same spectrum as in (d-f) but for the NWP-ZPG setup.

conclusions. Also note that we use absolute coordinate x − y − z in our processing of
the data, which means only the region above the wave crest (shown by the black line) is
physically meaningful. To obtain well-defined, wave-induced stress all the way down to
the wave surface, one needs to resort to wave-fitted curvilinear coordinates, which has
been adopted by the majority of literature [e.g., in DNS of Yang & Shen (2010), LES
of Husain et al. (2019) and laboratory experiments of Yousefi et al. (2020)]. Statistics
in absolute coordinates suffice for the purpose of qualitative analyses of these profiles,
and our results are in general agreement with the above-mentioned works. However, any
discrepancy of the wave-induced stress might be due to the coordinate choice, as pointed
out by Yousefi et al. (2020).

4.2. Wavenumber spectrum

Figure 4(a) shows vertical velocity at three cross sections z/λ = 0.1, 0.5, 1 (in wall unit
z/λ = 21, 107, 214). The near-wall region shows clear modulation from waves, which is
also indicated by the peak spectral signal at wavenumber kx = k0 in Figure 4(b). Further
away from the waves, the modulation is less prominent, and large-scale structures instead
play a dominant role. Figure 4(b,c) compare the spectrum obtained in Original and NWP-
ZPG setups. At z/λ = 0.1, the spectra are very similar, which again confirms that the
near-wave dynamics are dominated by perturbation from surface waves and less affected



Boundary layer flow over waves 9

Figure 5. Mean velocity profile in wall units for CU2, CU4 and CU8 in the Original setup (a)
and NWP-ZPG setup (b). Black dotted line shows the 1/κ log(z+) slope in z+ ∈ [50, 80], which
is the range we used to fit the roughness parameter.

c/u∗ 2 4 8

Original [0.331, 0.334] [0.395, 0.407] [0.473, 0.514]
NWP-ZPG [0.391, 0.402] [0.461, 0.488] [0.484, 0.508]

Table 1. Range of roughness length z+0 values extracted from the mean profiles.

by large-scale forcing. At z/λ = 0.5 and 1, the NWP-ZPG case has less energy in large
scales but more concentrated energy in small scales.
To quantify the sampling uncertainty in our spectrum computation, we compute the

standard deviation using different time snapshots divided by the square root of total
sample numbers σ(kx, ky) =

∑Nt

1 (Fw(kx, ky, t)−Fw(kx, ky))
2/
√
Nt. In Figure 4 (b,c) we

have masked out the pixels with a fractional standard deviation σ(kx, ky)/Fw(kx, ky) of
more than 20%. The rest of the spectral components are of statistical significance deemed
by this ad-hoc standard.

4.3. Estimate of roughness length from mean profiles

The last part of this analysis is devoted to discussing the mean profiles and the de-
rived roughness length, which is a popular modeling parameter in wall-resolved LES and
RANS.
We sample the spatially averaged mean velocity every 0.1 computational time units

(around 3.4 tν). Thick curves in Figure 5 are averaged over 100 samples, while the thin
opaque curves are averaged over 10 samples, which exhibit some level of variability in
the mean profiles. There seems to be more variability in the higher wave age cases, which
we do not yet understand.
For reference, the mean profiles of the precursor (when the waves are not moving)

and of a flat surface case of the same Reτ (taken from WU22) are shown. There is a
significant downshift from the flat wall case in the current group of cases with ak = 0.2,
but much less difference between varying wave age cases. This minor effect of wave age
on mean profiles aligns with our previous observations and suggests that the main factor
influencing roughness (i.e., drag) is the steepness of waves and other geometric properties
of the wave crests rather than wave age.
In Table 1, we list the roughness length (in wall unit) z+ in the Original and the
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NWP-ZPG setups. A sliding window of 50 samples was used, and instead of one value,
the interval of maximal and minimal values of fitted z0 from such windows is reported to
account for the variability mentioned earlier. The roughness length is larger in the NWP-
ZPG cases than in the Original cases for all three wave ages. By contrast, the difference
of z+ between different wave ages is smaller in the NWP-ZPG setup. This shows the
sensitivity of the main profiles (and consequently fitted roughness length value) to the
forcing scheme, which is perhaps exacerbated by the relatively small Reynolds number
in our simulations.
Despite the sensitivity of the roughness length parameter to processing and simulation

setup, we can still gain some insights from its trend and range of values. Consistent in
both setups, we see that for the same wave steepness there is a rather small increase in
z+0 as the wave age increases, which is counterintuitive. The range of z+0 from 0.3 to 0.5 is
larger than the smooth flat wall value (around 0.11), but can still be categorized as being
in the hydraulically smooth regime that is usually defined as z+0 smaller than 5 (Flack
& Schultz 2010). This is an important point: the resolved smooth monochromatic waves
themselves, without small-scale ripples or crest steepening due to nonlinear effects, are
not rough and interact with the boundary layer in a very different way from roughness
elements in engineering flows. Admittedly, the scenario might be different for a higher
Reynolds number and a much thinner viscous sublayer.

4.4. Discussion on the applicability of DNS data in subgrid modeling

The challenge remains as to effectively use DNS data to enhance simpler models of mo-
mentum flux (e.g., wall models) in wave-averaged or long-wave-resolved simulations. One
feasible approach is to treat DNS as a small computational unit for modeling ripples on
the order of O(1-10 cm), which can help in developing closure models for wall-modeled
LES. To account for the influence of larger scales that exceed the DNS domain, back-
ground forcing should be introduced to represent these modulations. One example is
to use a modified gravity to represent the location of ripples (resolved in DNS) on the
crest or trough of long waves (not resolved in DNS). An alternative to the traditional
equilibrium wall model with a roughness parameter, which assumes that the first grid
point in LES resides in the log layer, may be worth exploring. This could provide a more
accurate representation of the near-wall dynamics in complex wave environments. An-
other approach is to directly compare DNS with wave-resolved LES, despite differences
in Reynolds numbers. In this case, the comparison should focus on the flow structure,
such as turbulent and wave-induced stress in the near-wave region, rather than on the
mean profiles alone. Direct comparisons of mean profiles could be misleading due to the
absence of background ripples in the DNS, which leads to reduced drag compared to
wall-modeled LES.

5. Conclusions

The two-phase, fully-coupled DNS of wind-wave interaction from WU22 is further
developed, and an additional forcing scheme based on the idea of a near-wall-patch
forcing method is investigated for three different wave ages. Statistics from this DNS
data set, including the vertical turbulent and wave-induced stress profiles, the horizontal
spectra at different cross sections, and the mean velocity profiles, are presented.
From the flow field triple decomposition and the wavenumber spectra, we conclude that

changing the setup from a pressure-driven boundary layer to a zero-pressure-gradient
boundary layer near the waves does not significantly affect the near-wave dynamics,
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which confirms the dominant role of wave perturbation in the near-wall region. The
vertical stress profiles indicate that the length of the wave-affected layers scales with
wavelength but is less affected by the wave age. The mean velocity profiles show some level
of sensitivity to large-scale forcing. In particular, the roughness length in the NWP-ZPG
setup showed slightly larger values than that of the Original setup. Further studies and
a statistically converged precursor are needed to further confirm that and to understand
how the near-wave region interacts with large-scale motion away from the interface.
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