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Wind wave growth in the viscous regime
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We investigate the growth of short gravity-capillary waves due to wind forcing, solving
the two-phase Navier-Stokes equations. The numerical method features a momentum
conserving scheme, interface reconstruction using volume of fluid, and adaptive mesh
refinement. A 2D laminar wind profile is used to force short gravity-capillary waves in
the viscous regime, and the growth of the wave amplitude and subsurface drift layer are
analyzed. The threshold for wave growth is found to depend on a balance between the
growth rate and viscous dissipation rate, while the wave growth for all data can be described
as a scaling depending on wind stress and a viscous correction accounting for the growth
threshold. Together with the wave growth, the subsurface drift layer develops and can be
described in terms of a similarity solution. The nonlinear stage of wave growth is discussed
for increasing wavelength, and we recover steep capillary waves, parasitic capillary waves,
and spilling breakers depending on the ratio of gravity to surface tension forces.
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I. INTRODUCTION

Wind-wave interaction happens when wind blows across the water surface, causing the wave
amplitude to grow under the wind forcing. The physics of this common but complex phenomenon
has been studied for over half a century in numerous theoretical, experimental, and numerical works
(see the reviews from [1,2]). The seminal theoretical contributions of Miles [3] and Phillips [4] serve
as baseline of our current understanding. The growth rate of wind waves has been theoretically
studied by solving the Orr-Sommerfeld equations with investigations of the role of the wind profile
and viscosity [5,6]. Separately, many experimental measurements both at sea and in the laboratory,
supported by the theoretical analysis of Miles’, suggest a growth rate that scales with the inverse
wave age u∗/c [7], with c the wave phase speed and u∗ the wind friction velocity,

β = 2πα
ρa

ρw

(
u∗
c

)2

, (1)

where β = βT is the nondimensional growth rate, with β the growth rate and T the wave period,
related to the wavelength by the wave dispersion relation; ρa/ρw is the air-water density ratio;
and α is an O(10) constant adjusted to the data. However, scatter in data remains, and there are
controversies over how applicable this formula is in different regimes [8], in particular for short
waves where viscous effects might be important, and for steep waves where air-flow separation
might occur. This is related to the many difficulties in determining the momentum and energy
transfer from wind to waves under given conditions [9]. The small density ratio ρa/ρw makes growth
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rate small and precise measurement difficult; and wind wave interaction happens across a wide
range of wave scales, from capillary-gravity waves [O(mm) to O(cm)], to young gravity waves
[O(1 m)–O(10 m)] to swells [O(100 m)], and the dynamics and interplay with the surrounding
turbulent flow vary across the different scales. The wind field above the waves is a turbulent
boundary layer, characterized by high Reynolds number turbulence, which is difficult to formulate
analytically; besides, the wave effect on turbulent boundary layer is still an open question [10,11];
the coupling with the underlying currents is important in certain regimes [1]; and, last but not
least, there are very limited spatially and temporally well-resolved experimental data [9,12] due
to understandable difficulties of making measurement close to the water surface.

These challenges have motivated numerical investigations over the years. However, numerical
simulations are also restricted by the aforementioned difficulties. Large eddy simulation (LES)
[13–15] is a preferred method when studying large-scale wind wave interaction [O(1 m)–O(100 m)]
since it resolves only large scales and dynamically important eddies in turbulence and is therefore
computationally more effective. The challenge lies in including the small-scale effect within subgrid
scale modeling, in this case the representation of waves and their interaction with turbulence below
the grid resolution. This is usually done with a roughness length parametrization on a purely
empirical basis (see, e.g., [14,15]), although there are some recent efforts made towards dynamic
modeling of the roughness (see, e.g., [16]). In other words, it implicitly assumes accurate knowledge
of the momentum flux into small-scale waves. Direct numerical simulation (DNS), on the other
hand, has the advantage of resolving all small-scale transfer processes without models, but is limited
in the range of scales and Reynolds numbers it can achieve. Another major difficulty facing both
LES and DNS methods is the treatment of the coupling between two phases. Often times this
coupling is one-sided. With works focused on the waves’ effects on the turbulent boundary layer
[11], the waves are usually reduced to a boundary with prescribed shape and motion; with works
focusing on wave growth, on the other hand, the wind is often reduced to a pressure forcing term
[17,18]. There are still very few simulations achieving a two-way coupled simulation. Lin et al.
[19] performed DNS on two sets of equations for both phases, with linearized kinetic and dynamic
boundary conditions at the interface. Yang and Shen [20] described in detail the numerical procedure
for both DNS coupled with a potential wave solver and DNS coupled with DNS, and several working
cases are given. In each configuration, complex boundary conditions and grid mapping have to be
implemented.

We approach this long-standing problem with a different numerical method, leveraging progress
in adaptive mesh refinement algorithms for two-phase flows with the open source solver Basilisk
[21–24], including a geometric volume of fluid (VoF) interface reconstruction, a momentum
conserving scheme, and adaptive mesh refinement. Solving for a two-phase shear flow with a
deformable free surface is a challenging numerical problem, especially when large density and
viscosity ratios are involved. Numerical methods implemented within Basilisk are tailored to such
problems, and these methods have previously been applied to the modeling of a two-phase mixing
layer [25] demonstrating very good agreement with the solution of the Orr-Sommerfield eigenvalue
problem. The VoF interface tracking method is particularly valuable because it eliminates the need
of any prescribed boundary conditions at the interface and is not limited to linear wave regimes.
Hence, these methods have recently been used to study deep and shallow water breaking waves
[23,26,27]. These features differentiate our numerical approach from previous work and offer a
promising avenue for fully coupled wind-wave simulations.

As a first step towards a fully coupled 3D simulation with a turbulent boundary layer, in this paper
we present a laminar 2D configuration, with a linear wind shear profile, representing a constant shear
stress, forcing a single gravity-capillary wave. We investigate the small-scale dynamics of waves of
O(1 mm) to O(1 cm) where a large part of the wind stress is supported by viscous shear stress
and viscous damping is important, which might help understand the role of viscosity in the initial
stages of wind-wave growth with the development of a viscous shear layer underneath the wave. In
addition, it serves as a test of the ability of our numerical methods to resolve momentum and energy
transfer from a wind shear layer to a wave field.
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Viscous effects in wind wave growth have received limited attention [28]. When large-scale wind
wave interaction and high Reynolds numbers are considered, they usually come as a correction term
representing viscous wave dissipation, −4νwk2/ω to the total wave growth [7,9,29]. However, the
viscous effects remain crucial to wave onset criteria and lower Reynolds number wave growth, as
discussed experimentally and theoretically [28,30] with implications for the wind speed threshold
for wrinkles and regular waves, and for the subsequent spatial growth rate. Solving the full Navier-
Stokes equation with viscosity also means that we can investigate the water drift layer under surface
shear stress, which is known to be relevant for wind-forced waves [31] and has been experimentally
observed during wind wave onset [32,33]. The interplay between the wave growth and the drift
layer has been studied in the context of wave-current interaction (e.g., [34]) with an established
current profile. Our simulation setup reflects a more realistic concurrent development of wave and
subsurface drift, relevant to the existing theories of wave-current interaction.

The paper is organized as follows. In Sec. II we outline the governing equation and the numerical
method, and introduce the important nondimensional parameters. In Sec. III we introduce a heuristic
decomposition of the flow into a wave field and a drift layer. This allows separate studies of wave
growth and drift development. Finally in Sec. IV we discuss the subsequent nonlinear stages of
wind-wave growth, and for increasing Bond number (ratio of gravity to surface tension forces), we
recover nonlinear capillary waves (low Bond number), parasitic capillary waves formed at the front
of steep waves (intermediate Bond number), and spilling breakers (high Bond number). We present
a qualitative discussion of these wave regimes, in close agreement with the existing numerical and
experimental literature.

As a note of caution, we acknowledge that a laminar linear profile is not the wind profile above
large-scale waves at the ocean-atmosphere interface, which is typically characterized by a logarith-
mic profile. However, this study is relevant for small-scale viscous gravity-capillary waves, where
the upper boundary layer profile might not affect the wave growth, and for waves in microfluidic
systems [35]. This setup also serves as a validation of the numerical methods for wind-wave studies,
while the challenging generalization to three-dimensional simulations of wind-wave forced by a
turbulent boundary layer will be the goal of future work.

II. SIMULATION SETUP

A. Governing equations and numerical method

We use the two-phase Navier-Stokes solver Basilisk [21,22], with adaptive mesh refinement.
The two-phase incompressible Navier-Stokes equations are solved with a momentum conserving
scheme, and the interface between two immiscible fluids is captured by a geometric volume of fluid
(VoF) method. As such, we do not solve two separate sets of equations for each phase and connect
them with certain boundary conditions at the interface. We solve the variable density and viscosity
Navier-Stokes equations:

∂tρ + ∇ · (ρu) = 0,

ρ[∂t u + (u · ∇)u] = −∇p + ∇ · (2μD) + σκδS (x − xF )n, (2)

where Di j ≡ (∂iu j + ∂ jui )/2 is the strain rate tensor. Surface tension is represented by σκδSn as an
interfacial force, δS (x − xF ) is the Dirac function (xF is the surface location defined by F), and σ ,
κ , n are surface tension, curvature and the normal vector of the interface, respectively. The interface
is tracked with a volume fraction field F (x, t ). The geometric VoF method is sharp in the sense that
the interface is located within one cell and F goes from 0 to 1 within one cell. The density ρ and
viscosity μ are arithmetic averages of water and air densities ρw and ρa, and viscosities μw and μa,
i.e., ρ = Fρw + (1 − F )ρa, μ = Fμw + (1 − F )μa. The momentum is advected consistently with
the field F so that the total momentum is conserved, which is critical in the wind wave problem.
These choices of numerical methods make the fewest assumptions of the nature of the wind wave
interaction and allow full coupling between the two phases. We use adaptive mesh refinement to
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FIG. 1. Sketch of the simulation setup: a linear small amplitude (exaggerated in the sketch) wave η(x) is
initialized in the water, with phase speed c, forced by a constant slope linear shear layer in the air, ua(y). The
strength of the wind forcing is characterized by the ratio between the air friction velocity u∗ and the phase
speed c. The computational domain is a one wave length by one wave length square, and the origin is set in the
center, at mean water level.

gain a high resolution at the interface while keeping the total computational cost manageable. We
consider a maximum level of refinement of 11 in most of the cases presented here, equivalent to a
fixed grid of size 211 = 2048 per wavelength. Tests for grid convergence with level of refinement
up to 12 have been performed, and all results presented in the paper have been verified for grid
convergence as summarized in Appendix A.

B. Initial and boundary conditions, nondimensional variables

The initial conditions are sketched in Fig. 1. The wave interface η(x, 0) and orbital velocity are
initialized with a linear wave solution and a small slope a0k:

η(x, 0) = a0cos(kx), (3)

u(x, 0) = a0ω
cosh[k(y + h)]

sinh(kh)
cos(kx), (4)

v(x, 0) = a0ω
sinh[k(y + h)]

sinh(kh)
sin(kx), (5)

where

ω =
√

g̃ktanh(kh) (6)

is the dispersion relation for finite depth gravity-capillary wave [36], and g̃ = g + σk2/ρw is the
modified gravitational acceleration to account for surface tension. The wave number k = 2π/L0 is
such that there is one wave in the computational domain L0 × L0, and it propagates in the x direction
with periodic boundary conditions left and right. The bottom wall is free-slip, and we have verified
that the water depth h = L0/2 is a good enough approximation of the deep water wave condition.
The wave slope has little impact on the initial wave growth in the present configuration (which
has also been verified by simulations) as long as it is in the small amplitude regime, i.e., the slope

094801-4



WIND WAVE GROWTH IN THE VISCOUS REGIME

TABLE I. Wave and wind parameters used in the simulation: the physical wavelength and corresponding
matching Bond and Reynolds numbers. Bo and Re are computed with gravitational acceleration g = 9.8 m/s2,
surface tension σ = 0.074 N/m and water density ρw = 1 × 103 kg/m3. The inverse wave age varies from 0.4
to 1 to determine the wave growth threshold as a function of the Reynolds number. We also conducted cases
with higher Bond number 25 and 200 to discuss the role of Bond number at fixed Re, and discuss the nonlinear
stages and associated dynamical features when the wave reaches a high slope. These cases can be interpreted as
corresponding to water waves of wavelength 0.086 m and 0.244 m while being more viscous than water waves
of the same wavelength.

Wavelength [cm] Bo Re u∗/c

0.9 0.27 2587 0.7, 0.8, 0.9, 1.0
1.3 0.53 3389 0.6, 0.7, 0.8, 0.9, 1.0
2.1 1.47 5513 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
3.1 3.31 9105 0.4, 0.5, 0.6, 0.7

8.6 25 5513 0.4, 0.6, 1.0
24.4 200 5513 0.4, 0.6, 1.0

remains below 0.1. Therefore, all the following discussions on the initial growth rates are based on
cases with an initial slope a0k = 0.05, and growth rates are computed before ak reaches 0.1.

We consider a linear velocity profile to represent the wind close to the interface, as shown in
Fig. 1. The slope of the profile is specified by ρau2

∗/μa (slightly altered by the presence of the waves),
where u∗ is the air friction velocity widely used in wind wave literature to quantify the strength of
the wind forcing. This represents a constant shear stress condition with τ = ρau2

∗ (we have verified
that the change of the profile slope, i.e., τ during the simulated wave growing time is negligible).
The top wall boundary conditions are constant tangential velocity based on the given average slope
and zero normal velocity. As explained in the introduction, this linear profile is inspired by our focus
on small-scale waves and allows us to consider a 2D laminar air flow that is steady away from the
surface.

The relevant variables in this simplified 2D laminar wind-wave problem are ρa, ρw, μa, μw, a0, k,
g, σ , and u∗. Dimensional analysis gives that the problem is defined by six nondimensional numbers.
We consider the water-air density and viscosity ratios ρw/ρa and μw/μa, the initial wave slope
a0k, the inverse wave age u∗/c (quantifying the strength of wind forcing), the Reynolds number
Re (characterizing the viscosity versus inertial effect), and the Bond number Bo (characterizing the
relative importance of surface tension versus gravity). The actual water and air viscosity and density
ratios are used across all simulations, i.e., ρw/ρa = 850/1, and μw/μa = 8.9 × 10−4/17.4 × 10−6

and a0k is fixed to be 0.05. We are left with three controlling nondimensional numbers u∗/c, Re,
and Bo:

u∗/c, Re = ρwcλ

μw

, Bo = (ρw − ρa)g

σk2
, (7)

where c is the linear phase speed for gravity-capillary wave and λ is the wavelength,

c = ω/k =
√

g̃tanh(kh)/k, λ = 2π/k. (8)

For the majority of the cases, we match the choice of Bo and Re such that they correspond
to real water waves of certain wavelengths (see Table I) and consider four sets of simulations,
while sweeping the wind forcing u∗/c from 0.4 to 1, which corresponds to relevant values for
the growth of short waves considering the very early wave growth stage when the wave phase
speed is small. This wavelength range is close to the onset wavelength for wind waves reported
in [28]. We are limited in the highest Reynolds number because of the numerical instability
that large shear induces in the linear wind profile, when the laminar flow becomes unstable
with the development of 2D shear instabilities, which is not desirable in the current setting.
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FIG. 2. Snapshots showing an example of the wave and drift growth. The first row shows the wave interface
(in black) and the horizontal water velocity field in color. Decompositions between irrotational (horizontal)
wave velocity uirrot and drift velocity udrift are shown in the second and third rows. uirrot is computed from
surface elevation η(x, t ). The increase of wave amplitude, drift velocity, and thickening of the drift layer during
several wave periods can be seen clearly. The initial stages of growth are similar for all cases; shown here is
Re = 5513, Bo = 1.47, and u∗/c = 1.

We also performed a sequence of cases at fixed Reynolds number, Re = 5513, and increasing
Bond number, Bo = 25, 200, 1000 (thus not matching the Re of air-water waves), for wind
forcing u∗/c = 0.4, 0.6, and 1. This set of simulations will be used to discuss the Bond number
effect on the initial growth rate as well as the later development of the wave into nonlinear
dynamics.

III. CONCURRENT WAVE AND DRIFT GROWTH

A. Wave and drift growth under wind forcing

Figure 2 shows a typical wind wave growing case, for Re = 5513, Bo = 1.47, and u∗/c = 1
(corresponding to a wavelength of 2.1 cm). The first row shows the wave amplitude together with the
velocity field in the propagating direction, u(x, y). As the wind blows, the wave amplitude increases
and a thin shear layer underwater develops, which we call surface drift. We observe concurrent
growth of the wave and the drift layer: the wave amplitude becomes higher while the drift layer
thickens and the surface drift velocity increases. We initially focus on this growth regime, with small
amplitude and developing shear layer; thus, the simulations are run for four wave periods or until
the slope ak has doubled to reach 0.1. We also ran some cases to study later stages and nonlinear
features, and they will be discussed in Sec. IV. The surface drift layer has been experimentally
discussed in [32,33], in the context of wave growth inception, and considered as DNS initialization
in [19], but is often ignored in numerical studies, especially when a potential flow solver is used
[16].

To discuss the growth of the surface drift and the wave amplitude separately, within
these initial stages at low amplitude, we decompose the velocity field into two parts. The
irrotational part uirrot (second row) is computed in a similar way to Eqs. (4) and (5),
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with higher order correction terms, assuming that the wave shape resembles a Stokes wave
[37]:

η(x, t ) = a(t ) cos φ(x, t ) + εη1 + ε2η2, (9)

uirrot (x, t ) = a(t )ω
cosh[k(y + h)]

sinh(kh)
cos φ(x, t ) + εu1 + ε2u2, (10)

virrot (x, t ) = a(t )ω
sinh[k(y + h)]

sinh(kh)
sin φ(x, t ) + εv1 + ε2v2; (11)

ε = a(t )k is the instantaneous steepness and the small parameter of the nonlinear expansion. η1, η2,
u1, u2, v1, v2 are first- and second-order correction terms; see [26] for the full expression. There is
also a nonlinear correction to angular frequency ω =

√
g̃k tanh(kh){1 + ε2[(9/8(χ2 − 1)2 + χ2]},

where χ = 1/ tanh(kh), but in practice the finite depth effect is negligible in our setup. In principle,
the wave shape should deviate from that of a Stokes wave due to the presence of the drift layer
and capillarity, but this effect is neglected in this analysis of the initial stage. Note that because
of the low amplitude, the obtained drift would be similar if the linear approximation had been
used.

This decomposition requires the simulation output of the wave phase φ(x, t ) and a time depen-
dent amplitude a(t ). We extract the phase φ(x, t ) from the surface elevation η(x, t ) by performing
a Hilbert transform (as discussed when analyzing experimental data in [10]). The time-varying
amplitude is then computed from integrating η(x, t ):

a(t )2 = 2
∫ L0

0
η(x, t )2 dx/L0. (12)

We subtract uirrot from the total velocity field uw (first row in Fig. 2) to get the rotational part urot

(third row),

urot = uw − uirrot. (13)

We assume that the rotational part urot is approximately the drift velocity udrift . Free traveling waves
(without wind forcing) in a viscous fluid also have a thin layer of vorticity near the surface that is of
alternating signs, but we have verified that this contribution is at least an order of magnitude smaller
than the vorticity of the drift (see Appendix B for details). Therefore we ignore the wave vorticity
part, and take urot as an approximation of udrift , and use only the notation udrift for the following
discussion. Of course, this approximation is not as accurate in the nonlinear stages. Figure 2 shows
in the second row the irrotational part of the velocity field obtained through this decomposition,
which grows in intensity together with the wave amplitude, while the third row shows the drift
velocity with a thin layer developing and intensifying as time advances.

In the following sections we discuss the growth of the wave and drift respectively. It is found that
the respective wave energy budget and drift growth pattern are similar for all Re, Bo, and inverse
wave age u∗/c, but the relative growth of wave and drift can change across Re and Bo under the
same u∗/c.

B. Wave energy and growth rate

The total energy of the wave consists of three components, the kinetic energy

Ek = 1

2
ρ

∫
V

u2
irrot dV, (14)
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FIG. 3. Example of the wave energy extracted from the simulation output surface elevation η(x, t ), for
Re = 5513, Bo = 1.47, and u∗/c = 1. Equal partition between the kinetic Ek and the potential energy Eg + Es

is shown by the overlapping blue solid line and orange dotted line. The total wave energy (green solid line) is
the sum of the kinetic and potential energy. The growth rate of the wave β is computed by fitting an exponential
curve to the total energy budget (dashed line). All growing cases present a similar energy budget during the
initial growth, where the wave remains of low amplitude.

the gravitational potential energy Eg = ρg
∫

V y dV , and surface energy Es = σ
∫

S dA. For 2D waves,
we have

Eg = 1

2
ρg

∫
η(x, t )2 dx + const, (15)

Es = σ

∫
(
√

1 + (∂η/∂x)2 − 1) dx (16)

where the constant is a gauge to have zero energy when the interface is flat. In the linear regime,
Es/Eg is proportional to the Bond number, and there should be equal partition between potential
energy Eg + Es and kinetic energy Ek in the linear wave regime. The total wave energy is then
given by

E (t ) = Ek (t ) + Eg(t ) + Es(t ). (17)

The surface tension Es and gravity Eg energy terms are computed from the interface elevation η(x, t ),
and the wave kinetic energy Ek is computed using the irrotational wave velocity field uirrot obtained
as described in Sec. III A. In Fig. 3, Ek , Eg + Es and E are plotted, and equal partition is clearly
recovered between kinetic and potential energy terms. For simplicity, Es and Eg are not plotted
separately, but it is worth noticing that Es has a nontrivial contribution to the total energy in all cases
discussed here, in contrast to higher Bond number waves (typically Bo > 20) for which the surface
tension energy becomes negligible [26].

The wave energy in Fig. 3 is growing exponentially and can be fitted by

E (t ) = E0 exp(βt ) = E0 exp(βt/T ), (18)

where E0 is the initial wave energy and T = 2π/ω is the wave period computed from the dispersion
relation, so that the growth rate β is the only adjustable parameter determined by fitting the data.
This yields the nondimensional growth rate β = (T/E )∂E/∂t . All (growing) cases summarized in
Table I present an initial growth regime similar to the one shown in Fig. 3, with equal partition
between potential and kinetic energy and a growth that can be described as exponential as long as
the wave amplitude remains small (typically a wave slope ak < 0.1). We systematically obtain the
growth rate β̄ as a function of the controlling parameters Re, Bo, and u∗/c.
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FIG. 4. (a) Nondimensional wave growth rate as a function of inverse wave age u∗/c for different nondi-
mensional numbers (Re and Bo). The gray dotted line marks the cutoff between wave growth and decay due
to viscous dissipation. Wave growth increases with increasing wind forcing u∗/c. The intersection of the fitted
curve with the cutoff line gives the threshold value for wave growth, denoted by uthres/c and plotted in the
inset of (b). The nonmatching high Bond number cases are shown with triangles: Bo = 25, �; Bo = 200, �.
There is a weak dependency on Bond number for growth rate at higher u∗/c and growth threshold uthres/c.
All the growth rates are computed from the early stage when the energy curve is approximately exponential
with a constant growth rate, and the wave slope remains below 0.1. (b) Nondimensional wave growth rate as
a function of wind forcing accounting for the threshold (u∗ − uthres )/c. Data across different Re are collapsed
onto a single curve. Inset shows the threshold values uthres/c as a function of the normalized viscous timescale.
The gray fitted curve is uthres/c = 6.76

√
νk2T .

C. Wave growth rate and threshold

Figure 4(a) shows the nondimensional growth rate β as a function of inverse wave age u∗/c, for
sets of different Re and Bo. Under a fixed Re, the growth rate increases with u∗/c, and is positive
only above a certain threshold uthres/c, marked by the intersections of the fitted curves with the
β = 0 line. These threshold values are decreasing when Re is increasing, as lighter wind is able to
make less viscous waves grow. We comment that the normalized growth rate α [see Eq. (1) for its
definition] is within the range of experimentally reported data compiled in [8]. The growth rate also
shows a weak dependency on the Bond number.

The threshold can be understood by balancing the viscous dissipation rate of linear waves 4νwk2

[36] and the growth rate due to the wind forcing,

ρwνwk2 ∼ ρa(u∗/c)2/T, (19)

which suggests that the threshold for growth scales as uthres/c ∝
√

νwk2T . The gray curve in the
inset of Fig. 4 shows indeed this scaling relationship. The values are close in magnitude to the
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wave onset threshold found in the experiment done with water in [28], although the experimental
conditions are quite different from our numerical setup.

We find that the growth rates are better collapsed if plotted against the shifted variable u∗−uthres

instead of u∗, as shown in Fig. 4(b). This indicates that the growth rate from wind input does not
simply scale with (u∗/c)2, and the viscous effect plays a more complicated role than that included by
the 4νk2 damping term. Otherwise a (u2

∗−u2
thres)/c2 scaling would be expected, which is not the case

with the growth rates we collected in the present configuration. A theoretical explanation behind the
variable u∗−uthres requires further investigation and appears to result from a combination of viscous
and pressure stress forcing, instead of the pressure-dominated forcing scenario. Also, the pressure
variation might originate from a different mechanism than the one described in Miles’s classic work
[3] given the linear laminar wind profile.

D. Subsurface drift development

At the same time the wave grows, a layer of subsurface shear current with velocity udrift develops,
visible in Fig. 2. This layer of vorticity is the viscous fluid’s response to the strong wind shear
stress present in our configuration (see Fig. 1) and should not be confused with the thin vorticity
layer near the surface of freely propagating waves (see, e.g., [17,38]), which is much thinner
and is characterized by a viscous boundary layer of order δwave ∼ λ/

√
Re [26], as illustrated in

Appendix B.
There are two features systematically characterizing the subsurface drift development under this

linear wind shear: an increasing surface drift velocity and an increasing drift layer thickness as
time advances. To describe it quantitatively, we consider the phase average udrift (x, y, t ) over one
wavelength, denoted ud (y, t ). Admittedly the drift layer is not strictly uniform along the wave
phase, but this 1D profile ud (y, t ) is able to capture the major dynamics quite well and can be
readily modeled as viscous momentum diffusion driven by a constant shear stress at the boundary.
We follow the model proposed in [33] to describe the development of a viscous drift under wind
forcing in a laboratory experiment, which ignores the presence of the initial wave and considers the
following 1D diffusion equation over a flat boundary:

∂t ud = νw∂yyud , (20)

where νw = μw/ρw is the kinematic viscosity of water. The boundary conditions are (considering a
flat interface at y = 0)

ud (y, 0) = 0 for t � 0, (21)

ud (y, t ) → 0 as y → −∞, (22)

μw∂yud (y, t ) = τ at y = 0. (23)

This model follows the one developed in [33] that describes time dependency of the surface drift
for more general cases where shear stress is a polynomial of time τ = ∑

aktk . In our configuration,
τ = ρau2

∗ and can be seen as a constant (to a good approximation). Solving this diffusion equation
gives the time-dependent 1D profile

ud (y, t ) = τ�(1)

√
νwt

μw

2√
π

exp(−y2/8νwt )D−2(
√

y2/8νwt ), (24)

where D−2 is the parabolic cylinder function. The profiles at different time are plotted in Fig. 5(a),
which shows the intensification of the drift at the surface and the thickening of the layer with time
for a particular configuration. Figure 5(b) shows the same profiles scaled by the similarity variable√

νwt . We can see that the boundary layer thickness scaling
√

νwt works well in collapsing all the
curves, and there is an excellent agreement with the analytical solution Eq. (24) derived in [33]. It
is an indication that the wave motion and drift velocity can actually be considered separately in this
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FIG. 5. (a) Vertical shear layer profile evolution with time. The profiles are phase averaged over the
wavelength, for Re = 5513, Bo = 1.47, and u∗/c = 0.8, and time increases from light to dark lines. The
evolution is similar across different parameter values. As time advances, the drift layer becomes thicker and
more intense. (b) The same profiles with y scaled by the similarity solution variable

√
8νwt and ud scaled by

U0(t ). All profiles collapse onto a single curve, which is in good agreement with the analytical solution from
[33] [Eq. (24)].

linear regime. All simulations present a similar subsurface drift development as long as the wave
amplitude remains small.

The evolution of surface drift velocity U0(t ) = ud (y = η(x, t ), t ) can be directly obtained by
taking y = 0 in Eq. (24) and reads

U0(t ) = τ
�(1)

�(3/2)

√
νwt

μw

= u2
∗
ρa

ρw

�(1)

�(3/2)

√
t/νw. (25)

Figure 6 shows the normalized surface drift velocity U0(t )
√

νw/T /u2
∗ as a function of normalized

time t/T for different Re (and corresponding Bo) and increasing values of the inverse wave age u∗/c.

FIG. 6. Surface drift velocity U0(t ), normalized according to the self-similar solution Eq. (25) as a function
of time t/T . Color code is the same as in Fig. 4, corresponding to various Re, and markers show different
inverse wave age u∗/c values: u∗/c = 0.5 (×), 0.6 (◦), 0.7 (♦), 0.8 (�), 0.9 (�). All data collapse onto a single
curve for various u∗/c and Re, close to the analytical solution Eq. (25), shown with the dotted line.
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FIG. 7. Example of nonlinear development of the waves under the linear shear wind forcing. The wave
shape evolution for u∗/c = 1, Re = 5513, and Bo = 1.47, 25, and 200, is shown representing nonlinear
capillary waves (top row), parasitic capillary waves (middle row), and spilling breakers (bottom row) re-
spectively. (At Bo = 1000, we get a plunging breaker, which is not included here.) The color is air vorticity
� = ∂v/∂x − ∂u/∂y normalized by the initial velocity profile slope �0 = ρau2

∗/μa. Air-flow separation is
observed in all these nonlinear regimes, with the spilling breaking case showing the most significant feature.

The numerical time evolution of the drift surface velocity follows the analytical solution Eq. (25)
quite well, and data across the parameter space all follow the similarity viscous scaling (t/νw )1/2,
again as long as the wave amplitude remains small and the wave slope is below ak < 0.1.

IV. TOWARDS NONLINEAR WAVES

A. Wave shape and nonlinear regimes

In the previous sections, we discussed the growth of the drift layer and wave amplitude in
the small amplitude limit, corresponding to wave slope below 0.1. We restricted the growth rate
calculations using data before the wave amplitude has doubled (energy quadrupled). At this stage,
there is no obvious separation of the airflow, and the change to the airflow velocity profile is also
negligible. The growth threshold can be explained with a viscous scaling relation. When u∗/c
is above the threshold, waves grow in an exponential manner, and the growth rate β is found
to be a function of parameters u∗/c and Re, but not a strong function of the amplitude ak. The
growth of the drift layer at this stage matches well with the analytical solution from the 1D viscous
diffusion equation. As the simulation runs for longer times, and wind keeps inputting energy into the
wave field, the wave amplitude further increases, and nonlinear features emerge. We present here
a qualitative discussion of the nonlinear regimes that can be observed for various Bond numbers,
which present similarities to regimes described in the literature through laboratory experiments (e.g.,
[39]) and numerical simulations (e.g., [17,18,26]).

In Fig. 7 we show three sequences of wave growth with increasing Bond number, ranging from
a small value (Bo = 1.47) corresponding to mostly capillary waves, to an intermediate one (Bo =
25) where both gravity and capillarity are important and up to a higher value (Bo = 200) where
gravity dominates. These simulations are performed at a fixed Reynolds number, Re = 5513. In
other words, we are no longer matching Bo and Re as we did for the cases shown in Sec. III. The
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FIG. 8. Representative snapshots of wave shape (solid lines) and slope ∂η/∂x (dotted lines) for Bo =
1.47, 25, 200, Re = 5513, u∗/c = 1. This figure highlights the asymmetric wave shape for nonlinear waves
at different Bond number. For Bo = 1.47, we observe nonlinear capillary waves; for Bo = 25, we observe
parasitic capillary waves on the leeward; for Bo = 200, the wave first becomes short-crested and then it forms
a spilling breaker.

Bo = 25 and 200 cases can be interpreted as water waves of wavelength 8.6 and 24.4 cm while
being more viscous than real waves of the same wavelength. The color indicates the vorticity in the
air, and it is clear that there is separation behind the crest for all cases when the amplitude is high
enough. Initial wave growth for all cases is similar with the wave amplitude increasing and without
significant change in wave shape; however, as the wave amplitude increases beyond the linear stage,
there starts to be airflow separation, and the wave dynamics become different depending on the
Bond number.

The first row shows the Bo = 1.47 configuration (with Re = 5513, corresponding to a wave-
length of 2.1 cm) under the wind forcing during the later stages of the time evolution. We observe at
later stages (t/T = 12 to 14) the development of a nonlinear capillary wave, while the increase
in amplitude appears to slow down as the higher amplitudes are reached (due to the enhanced
dissipation related to vorticity generation near curved interfaces). The nonlinear capillary wave
displays a rounded crest and narrow trough, while a clear recirculation area in the air flow is visible,
similar to airflow separation for gravity waves. The second row shows the Bo = 25 case and we
observe that parasitic capillary waves start to develop on the forward face when the local slope
ηmaxk ≈ 0.4, around t/T = 12. The train of capillaries propagates on the forward face of the wave,
and there is associated vorticity generation underwater, together with airflow separation in the air
phase. At some point, the wave amplitude starts to decrease, due to the enhanced dissipation induced
by the parasitic capillary waves (t/T = 14). The third row shows the Bo = 200 case, and as the
amplitude grows, the crest becomes sharper, and we observe a spilling breaker when the local slope
becomes too high, ηmaxk ≈ 0.57 (t/T = 13), and the wave collapse on its forward face. Strong
airflow separation is observed in this configuration, and wave energy loss is visible through the
reduced amplitude that follows the collapse of the wave.

All these results are in general agreement with the different regimes reported in wind wave
experiments [39] for parasitic capillary waves and spilling breakers, and in previous DNS work
on capillary effect on wave breaking (without wind) [26,40], as well as in numerical work on
waves forced by a pressure forcing term [17,18]. Note that the dynamics of spilling breakers in
the laboratory (for mechanically forced waves), described in [41], are also similar to the regime
observed here.

We highlight the asymmetric wave shapes at the nonlinear stage for these three cases by plotting
η and ∂η/∂x for three representative times in Fig. 8. At Bo = 1.47, the nonlinear capillary wave
shows a rounded crest and narrow trough, which is in agreement with the analytical solution
derived in [42] for irrotational pure capillary waves. Due to the effect of the wind, the crest also
shows asymmetry in the x direction, which is not the case for free traveling waves in [42]. When
the nonlinear wave further develops, it seems that another crest of smaller wavelength starts to
develop near the trough, which looks strikingly similar to the steady solution obtained under strong
forcing conditions in [17]. At Bo = 25, the parasitic capillary waves forming on the leeward are
very similar both to those described in the literature for similar parameters [26] without wind
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FIG. 9. The energy curve before and after breaking, for Bo = 1.47, 25, 200, Re = 5513, u∗/c = 1. The
solid lines are the wave energy obtained by considering the kinetic and potential wave energy, following the
velocity decomposition as described in Sec. III A. The dotted lines are the corresponding rotational kinetic
energy. Note that this decomposition is not well defined in the nonlinear regime but provides an approximate
partition. The thin solid line represent the exponential fit during the initial growth stage. For Bo = 1.47,
oscillations in the wave energy correspond to the appearance of nonlinear capillary waves with high curvature,
which induces a loss of energy (into rotational kinetic energy). For Bo = 25, parasitic capillary waves are
formed around t/T = 11 and induce a significant loss in wave energy. Parasitic capillary waves form earlier
than spilling breakers, but both induce a significant amount of wave energy transferred into drift.

but with finite amplitude Stokes wave initialization, and to earlier ones obtained using different
numerical methods [17,43]. At Bo = 200, the wave first becomes short-crested, which is commonly
observed for wind, and is found to happen when waves travel downstream the underlying current
[34] (in our setup the current is the drift layer). A spilling breaker then forms, which has been
observed experimentally in this wavelength range and discussed extensively in, e.g., [41]. The wave
breaks at a higher slope than previously observed with simulations that initialize with a steep Stokes
wave without wind forcing, which indicates that the process leading to breaking might have an
effect on the breaking threshold. Again, this spilling breaker obtained with the linear wind shear
forcing is very similar to the one obtained in [26] without wind forcing, starting from a high slope
wave.

In general, the nonlinear wave shapes shown here are in good agreement with existing experi-
mental and numerical studies. This is a remarkable point in itself since previous numerical works
used different numerical methods and forcing conditions (a steady solution of potential flow with
viscous boundary layer and pressure forcing in [17]; single-phase DNS with prescribed pressure and
shear stress forcing in [43]; while other studies on spilling breakers and parasitic capillary waves
did not consider any air-side forcing [26,40]). This, together with the general qualitative agreement
with experimental studies [39,41], suggests that the nonlinear stage dynamics might not be strongly
dependent on the specific forcing mechanism.

B. Energy budget in the nonlinear regime

Figure 9 shows the energy curves of the three cases discussed above: Bo = 1.47, 25, 200
at Re = 5513, and for u∗/c = 1. After the initial exponential growth stage, waves at different
Bond number demonstrate very different time evolution scenarios, corresponding to the nonlinear
dynamics described above: steep capillary wave, parasitic capillary waves, and spilling breaker.
In all cases, the energy growth departs the exponential growths after four to five wave periods,
corresponding approximately to the moment the wave slope becomes higher than 0.1.

For Bo = 1.47, as the nonlinear capillary waves grows in amplitude, the total wave en-
ergy keeps increasing at approximately a linear rate, before showing energy oscillations around
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t/T = 10, when very steep capillary wave is observed (see Fig. 7). These oscillations are
linked to the energy loss associated with vorticity generation when high-curvature regions
appear.

For Bo = 25, the formation of parasitic capillary waves on the forward face of the wave at t/T ≈
11 leads to a wave energy loss and corresponds to energy transfer from the wave into the rotational
kinetic energy or subsurface drift and introduces a large amount of dissipation, the wave losing
about half of its total energy within two wave periods. This transfer results from the high-vorticity
region induced by the large curvature of the parasitic capillary waves [38] and is independent of
the wind forcing. The wave amplitude decreases because of the transfer of energy and increased
dissipation. It is important to notice that this description of parasitic capillary waves and their role
in energy dissipation is in close agreement with previous studies [17,26,29,40], with and without
wind forcing, suggesting that the process is independent of the details of the air flow.

For Bo = 200, a spilling breaker happens at t/T ≈ 13, once the wave has reached a relatively
high slope, later than the parasitic capillary wave. This breaking process is associated with a dra-
matic drop in the wave energy and a significant increase in the rotational kinetic energy (subsurface
drift) energy. Again, the magnitude of the energy loss due to breaking during the spilling process is
very similar in magnitude to that found in a previous study [26], which indicates that once breaking
is triggered, the decay rate is independent of the wind forcing and is insensitive to the viscosity at
high enough Re.

V. CONCLUSION

We investigated the wind wave growth problem of gravity-capillary waves in the viscous regime,
with direct numerical simulations that solve the two-phase Navier-Stokes equations using an
adaptive mesh refinement and VoF interface reconstruction, under a simplified 2D laminar setup.
The results show that the wave growth and the drift development can be analyzed in a relatively
independent manner in the linear stage. The wave growth rates across a parameter space of Bo,
Re, and u∗/c are reported. The growth/decay threshold computed from numerical experiments can
be explained by balancing the viscous damping and wind input rate. The wave growth rate in the
viscous regime can be better described by using a u∗/c − uthres/c variable that includes the viscous
effect, although the specific functional form of the growth rate remains to be fully understood. The
drift development can be described by a diffusion equation, which leads to the similarity solution
for the surface drift velocity and vertical profile. In the early stage when the amplitude is small,
most of the momentum is transferred into the drift. For the cases where u∗/c is below the growing
threshold, the dynamics more closely resemble a wind-driven water boundary layer. The nonlinear
growth stage is also discussed. We recover various wave shapes and dynamics as a function of
the Bond number, including steep nonlinear capillary waves, parasitic capillary waves, and spilling
breaking. We observe energy transfer from the wave field to the subsurface current when parasitic
capillary waves are formed or when wave breaking occurs.

In summary, this numerical setup permits study of the full life cycle of short waves, from
exponential growth of small amplitude waves, to nonlinear wave growth leading to breaking. We
observe an associated development of a drift layer beneath the wave, as well as air flow separation
above the steep waves, and modification of the initially linear shear profile in the air. However, we
should keep in mind that the present setup is 2D and laminar, hence the specific forcing mechanism
and later stage separation patterns with a turbulent boundary layer will likely be different. The full
cycle simulation has provided us with a valuable physical picture of wind wave growth, and future
work should focus on providing a more accurate representation of the 3D turbulent wind structure.
This has long been a challenging task for numerical works on wind wave interaction, and it is the
plan of future work to extend the current setup to 3D simulations with the coupled air-water turbulent
boundary layers, which will allow a more complete study of pressure and shear stress forcing and
wave-wind-current interactions.
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FIG. 10. Total energy budget for the case Re = 9105, Bo = 3.31, and u∗/c = 0.6, showing the convergence
of the results with respect to grid size. The results are very similar between the maximum refinement levels 10,
11, and 12. Level 9 causes development of 2D vortex instabilities and is not considered.
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APPENDIX A: NUMERICAL CONVERGENCE

Here we give a brief verification of grid convergence. Considering a length L0 domain and a
maximum refinement level N adaptive mesh, the effective resolution is �x = L0/2N . Plotted in
Fig. 10 are the total energy curves obtained under three refinement levels for the highest Re case
(which requires the finest grids to resolve). Between levels 10, 11, and 12 there is satisfactory grid
convergence, and the results shown above are all of level 11. All cases present similar convergence
curves. Going below level 10, it exhibits instability in the air shear flow and the energy curve does
not have physical meaning and is not plotted here.

For grid resolution in terms of wall unit, although the airflow is not turbulent, we can still define
wall unit in a similar manner, i.e., δν = νa/u∗, and in the most demanding case (with Re = 20 000,
u∗/c = 0.7), we have an effective resolution about 0.2 wall unit, i.e., �(y+) = 0.2. �(x+) is the same
as �(y+) because adaptive mesh refinement does not differentiate between the x and y directions.

APPENDIX B: ON THE VORTICITY IN A VISCOUS FLUID

In this section, we clarify that the source of the vorticity in water (what we call drift layer) is
mainly from wind shear stress, by giving a visualization of vorticity in the water without and with
wind forcing in Fig. 11.

It has been theoretically established [38] that in free propagating surface waves, even though the
interior of the water can be approximated as irrotational, as long as the fluid is viscous, there is a
thin layer of viscosity near the surface. This is because the boundary condition of zero stress (free
surface) must be satisfied. More specifically, to the first order in ak,

�w = �0eαn,

where �0 ≡ 2(∂v/∂y)y=0, and α = (−iω/νw )1/2 [see Eq. (3.6) in [38]]. Here �w is used to denote
the vorticity in the water while ω is the wave frequency, the same as in Fig. 11. n is the outward
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FIG. 11. Vorticity in water �w normalized by wave frequency ω, for propagating waves at Re = 3389 and
Bo = 0.53. Here t = 2T , and the initial wave slope ak = 0.05. Left: No wind, a thin vorticity layer is visible
with alternating sign, and its thickness δ1 does not increase with time. This corresponds to the free surface
vorticity described in [38]. Right: There is wind and u∗/c = 0.8. The vorticity layer is much more intense and
thickness δ2 develops over time. Note the order of magnitude difference in the color scale.

normal, and (∂v/∂y)y=0 is the vertical velocity gradient at the surface. This means that the vorticity
induced by this mechanism is of alternating sign and does not penetrate a distance of order δ1 =
(νw/ω)1/2. This is verified by running a case with the same wave initialization, but without wind,
shown on the left in Fig. 11. To the second order in ak, it is derived in [38] that there is a mean
vorticity �w = −2(ak)2ω beyond the thin boundary layer δ1 = (νw/ω)1/2 but this effect is neglected
in this initial stage.

In our simulation setup, with shear stress forcing, the vorticity layer is almost uniform and much
more intense. Its dynamics are described in Sec. III D, and the thickness δ2 scales with

√
νt .

Figure 11 shows the vorticity in a pair of no wind and u∗/c = 0.8 cases; it is clear that the
vorticity in the latter is an order of magnitude higher then in the former. Therefore, we conclude
the decomposition proposed in Sec. III A is reasonable as the shear induced drift is dominant in
all cases. However, an unambiguous decomposition of the velocity field into wave and drift for the
nonlinear stage is nontrivial, and the discussion in Sec. IV is mostly qualitative.
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